skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Mingda"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. Growing up with bedtime tales, even children could easily tell how a story should develop; but selecting a coherent and reasonable ending for a story is still not easy for machines. To successfully choose an ending requires not only detailed analysis of the context, but also applying commonsense reasoning and basic knowledge. Previous work has shown that language models trained on very large corpora could capture common sense in an implicit and hard-to-interpret way. We explore another direction and present a novel method that explicitly incorporates commonsense knowledge from a structured dataset, and demonstrate the potential for improving story completion. 
    more » « less
  4. Earth observation data with high spatiotemporal resolution are critical for dynamic monitoring and prediction in geoscience applications, however, due to some technique and budget limitations, it is not easy to acquire satellite images with both high spatial and high temporal resolutions. Spatiotemporal image fusion techniques provide a feasible and economical solution for generating dense-time data with high spatial resolution, pushing the limits of current satellite observation systems. Among existing various fusion algorithms, deeplearningbased models reveal a promising prospect with higher accuracy and robustness. This paper refined and improved the existing deep convolutional spatiotemporal fusion network (DCSTFN) to further boost model prediction accuracy and enhance image quality. The contributions of this paper are twofold. First, the fusion result is improved considerably with brand-new network architecture and a novel compound loss function. Experiments conducted in two different areas demonstrate these improvements by comparing them with existing algorithms. The enhanced DCSTFN model shows superior performance with higher accuracy, vision quality, and robustness. Second, the advantages and disadvantages of existing deeplearningbased spatiotemporal fusion models are comparatively discussed and a network design guide for spatiotemporal fusion is provided as a reference for future research. Those comparisons and guidelines are summarized based on numbers of actual experiments and have promising potentials to be applied for other image sources with customized spatiotemporal fusion networks. 
    more » « less
  5. Images and text in advertisements interact in complex, non-literal ways. The two channels are usually complementary, with each channel telling a different part of the story. Current approaches, such as image captioning methods, only examine literal, redundant relationships, where image and text show exactly the same content. To understand more complex relationships, we first collect a dataset of advertisement interpretations for whether the image and slogan in the same visual advertisement form a parallel (conveying the same message without literally saying the same thing) or non-parallel relationship, with the help of workers recruited on Amazon Mechanical Turk. We develop a variety of features that capture the creativity of images and the specificity or ambiguity of text, as well as methods that analyze the semantics within and across channels. We show that our method outperforms standard image-text alignment approaches on predicting the parallel/non-parallel relationship between image and text. 
    more » « less